First-Order Model Management Frameworks for Engineering Optimization

Natalia M. Alexandrov

NASA Langley Research Center

Slides accessible from http://fmad-www.larc.nasa.gov/mdob/MDOB (better yet, search for "MDOB")

Outline

- Introduction
- First-order model-management
 - Basic ideas
 - Example: $S\ell_1QP$ -AMMO framework
 - Computational example: variable-fidelity physics in AMMO
- Comments

Introduction

- Workshop's central question: How to endow modern large-scale PDE solvers with optimization capabilities?
- We ask: How to endow modern optimization solvers with large-scale PDE capabilities?
 - Theme of our talks:
 - * An immediate solution of simulation-based optimization problems
 - * Straightforward to integrate with simulations
 - * Combine well-established engineering approximation concepts with the trust-region idea from nonlinear programming to ensure robust behavior

Problem

 \bullet The analysis or simulation problem: Given x, solve a system of coupled equations

$$A(x, u(x)) = 0$$

for u that describes the physical behavior of the system.

• The design problem (canonical formulation): Solve

$$egin{aligned} ext{minimize} & f(x,u(x)) \ ext{subject to} & c_i(x,u(x)) = 0, \ i \in \mathcal{E} \ & c_i(x,u(x)) \leq 0, \ i \in \mathcal{I} \ & x_l \leq x \leq x_u, \end{aligned}$$

where, given x, u(x) is determined from A(x, u(x)) = 0.

• In our context, "large-scale" means computationally expensive, regardless of the number of variables and constraints explicitly manipulated in optimization.

Nature of the problem

- Cost of solution is driven by simulations
- Number of variables and constraints explicitly used in optimization depends on problem formulation
- Focus on canonical formulation because need an immediate solution, while simulation codes are usually available as black boxes. Methodology applicable to other formulations.
- Function and derivative evaluation may not be robust
- Objective of work: reduce cost of optimization with simulations by minimizing the expense of using high-fidelity models in single-discipline optimization and MDO

Ideas of 1st-Order Approx/Model Management Optimization (AMMO)

- Derivative-based optimization techniques, including trust-region methods, rely on Taylor-series local models of objectives and constraints; variation in models variation in derivative approximations
- AMMO takes the idea of local models further:
 - Use well-developed engineering approximation and modeling ideas
 - Replace Taylor-series models with general models that have trends similar to those obtained with high-fidelity models
 - Trust-region techniques provide global convergence
- Related work
 - Approximations long in use in engineering optimization (see refs in the paper)
 - Zero-order model management (comments later, time permitting)

Ensuring local similarity of trends

Let \tilde{f} , \tilde{c}_E , and \tilde{c}_I be some lower-fidelity models of f, c_E and c_I , respectively. At each major iteration k, x_k of an AMMO algorithm, the models are required to satisfy first-order consistency:

$$ilde{f}(x_k) = f(x_k), \qquad ilde{c}_E(x_k) = c_E(x_k), \qquad ilde{c}_I(x_k) = c_I(x_k)$$

$$abla ilde{f}(x_k) =
abla f(x_k), \qquad
abla ilde{c}_E(x_k) =
abla c_E(x_k), \qquad
abla ilde{c}_I(x_k) =
abla c_I(x_k)$$

- ullet Models with this property locally mimic the behavior of first-order Taylor-series models around x_k
- Easily enforced when derivatives are available

Enforcing First-Order Consistency

- Multiplicative "β-correction", Chang, Haftka, Giles, Kao, 1993:
 - Given $\phi_{hi}(x)$ (say, f) and $\phi_{lo}(x)$, define $\beta(x) \equiv \frac{\phi_{hi}(x)}{\phi_{lo}(x)}$
 - Given x_k , build $\beta_k(x) = \beta(x_c) + \nabla \beta(x_k)^T (x x_k)$
 - Then $\tilde{\phi}_k(x) = \beta_k(x)\phi_{lo}(x)$ satisfies the consistency conditions at x_k
- Additive correction (in the context of multigrid schemes), Lewis and Nash,
 2000:

$$\tilde{\phi}_{k}(x) = \phi_{lo}(x) + [\phi_{hi}(x_{k}) - \phi_{lo}(x_{k})] + [\nabla \phi_{hi}(x_{k}) - \nabla \phi_{lo}(x_{k})]^{T}(x - x_{k})$$

Examples of Variable-Fidelity Models for Use in AMMO

- Data-fitting models (polynomial RS, splines, kriging)
 - Rely directly on hi-fi information; do not require derivatives; simple to construct; difficult to sample; "curse of dimensionality"
- Reduced-order models
 - Use reduced-order bases (constructed as a span of solutions and possibly derivatives at some points) to represent field variables at other points
- Variable-accuracy models
 - Converge analyses to a user-specified tolerance
- Variable-resolution models
 - Executing a single physical model on meshes of varying degree of refinement
- Variable-fidelity physics models
 - E.g., in aerodynamics, physical models range from inviscid, irrotational,
 incompressible flow to Navier-Stokes equations for nonlinear viscous flow

Convergence vs. Performance

- Convergence analysis relies on the consistency conditions and standard assumptions for the convergence analysis of the underlying algorithm (see paper for three examples)
- For convergence, need only a notion of two models, one arbitrarily designated "high fidelity" or "truth", the other "low fidelity"
- Practical efficiency
 - Problem/model dependent
 - Depends on the ability to transfer computational load onto low-fidelity computation, which...
 - Depends on the predictive quality of the low-fidelity models (surrogates)
 - In the worst case, AMMO is conventional optimization

Example: AMMO Based on $S\ell_1QP$

- AMMO can be used with any derivative-based algorithm; to date, implemented and tested AMMO based on five algorithms
- Principle: a simple implementation with maximum use or existing software
- Problem: have not found software suitable for simulation-driven optimization
- Resolution: writing our own
- Meanwhile: nonsmooth exact penalty functions a potential alternative to SQP; simple merit function, similar convergence properties (Fletcher 1989)

Consider a composite penalty function

$$\mathcal{P}(x;h) \equiv f(x) + h(c(x)),$$

where f and c are smooth and h is convex but possibly only continuous.

$S\ell_1QP$

Fletcher's choice of \mathcal{P} is the penalty function

$$\mathcal{P}(x;\sigma) = f(x) + \sigma \sum_{i \in E} |c_i(x)| + \sigma \sum_{i \in I} \max\{0, c_i(x)\}.$$

This is an exact penalty function if σ satisfies

$$|\sigma>\min_{i\in L}|\lambda_i|,$$

where L is the set of all multipliers for the NLP. The model of $\mathcal P$ is

$$m(x_k, s; \sigma) \equiv q(x_k, s) + \sigma \sum_{i \in E} |l_i(x_k, s)| + \sigma \sum_{i \in I} \max\{0, l_i(x_k, s)\},$$

where $q(x_k, s)$ is the quadratic model of f and $l_i(x_k, s)$ are linearizations of constraints. The prototype $\mathrm{S}\ell_1\mathrm{QP}$ finds global solutions s_k of

$$egin{aligned} & \min_{s} & m(x_k, s; \sigma) \ & ext{subject to} & \parallel s \parallel_{\infty} \leq \Delta_k \end{aligned}$$

$S\ell_1QP$, continued

The step is evaluated by examining

$$ho_k = rac{\mathcal{P}(x_k; \sigma_k) - \mathcal{P}(x_k + s_k; \sigma_k)}{m(x_k, 0; \sigma_k) - m(x_k, s_k; \sigma_k)}$$
 as follows:

Select $0 < r_1 < r_2 \le 1$ and $0 < \kappa_1 < 1 < \kappa_2$.

Typical values are $r_1 = 0.25$, $r_2 = 0.75$, $\kappa_1 = 0.25$, $\kappa_2 = 2$.

Set
$$x_{k+1} = \begin{cases} x_k & \text{if } \rho_k \leq 0 \\ x_k + s_k & \text{otherwise.} \end{cases}$$

$$\operatorname{Set} \Delta_k = \left\{egin{array}{ll} \kappa_1 \parallel s_k \parallel & ext{if }
ho_k < r_1 \ \kappa_2 \Delta_k & ext{if }
ho_k > r_2 ext{ and } \parallel s_k \parallel = \Delta_k \ \Delta_k & ext{otherwise.} \end{array}
ight.$$

$S\ell_1QP$ -AMMO Model and Algorithm

$$m(k,x_k,s;\sigma) \equiv ilde{f}(k,x_k,s) + \sigma \sum_{i \in E} | ilde{c}_{E,i}(k,x_k,s)| + \sigma \sum_{i \in I} \max\{0, ilde{c}_{I,i}(k,x_k,s)\}$$

whose components satisfy the consistency conditions. Note that the model m depends on k, as follows.

Initialization: Choose x_0 , Δ_0 , and constants as above.

Do $k = 0, 1, \ldots$ until convergence:

Model construction:

Construct model $m(k,x_k,s;\sigma_k)$ of ${\cal P}$

Step computation:

$$ext{Solve for } s_k \left\{ egin{array}{ll} ext{minimize} & m(k,x_k,s;\sigma_k) \ ext{subject to} & \parallel s \parallel \leq \Delta_k \end{array}
ight.$$

Step evaluation: Compute ρ_k . Accept or reject the step based on ρ_k as above.

Updates: Update x_k , Δ_k based on ρ_k as above.

End do

Convergence of $S\ell_1QP$ -AMMO

Theorem:

Let $f, c_E, c_I \in C^2(\Omega)$ have bounded second derivatives on a bounded $\Omega \subset I\!\!R^n$. Let $\tilde f, \tilde c_E, \tilde c_I \in C^2(\Omega)$ be any models of f c_E , and c_I , respectively, that satisfy the first order consistency conditions and have uniformly bounded second derivatives on Ω . Let $\{x_k\} \in \Omega$ be the sequence of iterates generated by $S\ell_1QP$ -AMMO. The there exists an accumulation point x_* at which the first-order optimality conditions for minimizing $\mathcal P$ hold, that is,

$$\max_{\lambda \in \partial h_*} (g_* + \nabla c_* \lambda)^T s \geq 0 \text{ for all } s,$$

where ∂h_* is the generalized derivative of h.

An Alternative $S\ell_1QP$ -AMMO

Impose the following conditions on the model and the trial step:

- Smoothness: The model m is locally Lipschitz continuous and regular with respect to s for all (x, σ) and continuous in (x, σ) for all s.
- Zero-order matching: The values of the function and model coincide when s=0.
- First-order matching: The generalized directional derivatives of the function and model coincide when s=0.
- Bounded parameters: The set of problem parameters is closed and bounded.
- Sufficient decrease: For any x_* , there exist constants $\delta, \epsilon, \kappa \in (0, 1)$ such that s_k satisfies

$$m(k, x_k, 0, \sigma_k) - m(k, x_k, s_k, \sigma_k) \geq \kappa \parallel g(x_k) \parallel \min\{\delta, \Delta_k\},$$

where $g = \arg\min_{g \in \partial f} ||g||$. These conditions are summarized in CGT 2000.

An Alternative S ℓ_1 QP-AMMO, continued

In $S\ell_1QP$ -AMMO, the smoothness, boundedness, zero- and first-order matching conditions are satisfied by assumption. Guaranteeing sufficient decrease - in progress.

Updates for $S\ell_1$ QP-AMMO with sufficient decrease

Select
$$\Delta_{max} > 0$$
, $0 < r_1 \le r_2 \le 1$ and $0 < 1/\kappa_3 \le \kappa_1 \le \kappa_2 < 1 < \kappa_3$.

$$\operatorname{Set}\left(x_{k+1}
ight) = \left\{egin{array}{ll} x_k + s_k & ext{if }
ho_k \geq r_1 \ x_k & ext{otherwise.} \end{array}
ight.$$

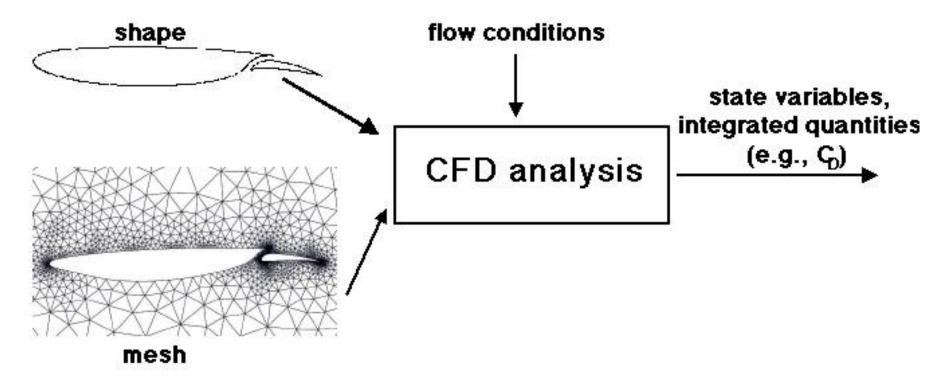
$$egin{aligned} \operatorname{Set} \Delta_{k+1} &\in \left\{egin{array}{ll} \left[\kappa_1 \Delta_k, \kappa_2 \Delta_k
ight] & ext{if }
ho_k < r_1 \ \left[\kappa_2 \Delta_k, \Delta_k
ight] & ext{if }
ho_k \in \left[r_1, r_2
ight) \ \left[\kappa_3 \Delta_k, \kappa_2 \Delta_{max}
ight] & ext{if }
ho_k \geq r_2. \end{aligned}
ight.$$

Convergence to a first-order critical point is immediate under these conditions (see, e.g., Theorem 11.2.5 in CGT 2000).

Computational Demonstrations

- Because of data-fitting model limitations, we have focused on models that are independent of the number of variables
- Independence wrt dimension is important: in preliminary design, problems of modest size number O(100) variables
- AMMO admits a wide variety of models and algorithms; demonstrations are aimed at accumulating realistic experience to validate the algorithmic performance
- Because we cannot predict *a priori* the relative descent characteristics of models, must include cases of favorable and unfavorable relationship between models
- Aerodynamic shape optimization is a good test problem: practically important, computationally intensive, comes in a variety of dimensions

Demonstration Problems: Aerodynamic Optimization



minimize Integrated quantities, such as $-\frac{L}{D}$ ($\frac{\text{lift}}{\text{drag}}$) or C_D (drag coefficient) subject to constraints on, e.g., pitching and rolling moment coefficients, etc.

$$x_l \le x \le x_u$$

Managing Variable-Fidelity Physics Models: Multi-Element Airfoil (AIAA-2000-4886, Alexandrov, Nielsen, Lewis, Anderson)

- A two-element airfoil designed to operate in a transonic regime inclusion of viscous effects is very important
- Governing equations: time-dependent Reynolds-averaged Navier-Stokes

$$Arac{\partial Q}{\partial t}+\oint_{\partial\Omega}ec{F_i}\cdot\hat{n}dl-\oint_{\partial\Omega}ec{F_v}\cdot\hat{n}dl=0,$$

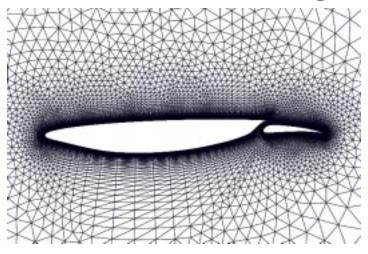
where $ec{F_i}$ and $ec{F_v}$ are the inviscid and viscous fluxes, respectively

- Flow solver (FUN2D) unstructured mesh methodology (Anderson, 1994)
- Sensitivity derivatives hand-coded adjoint approach (Anderson, 1997)
- Conditions:
 - $M_{\infty} = 0.75$
 - $-Re = 9 \times 10^6$
 - $-\alpha = 1^{\circ}$ (global angle of attack)

Multi-Element Airfoil, cont.

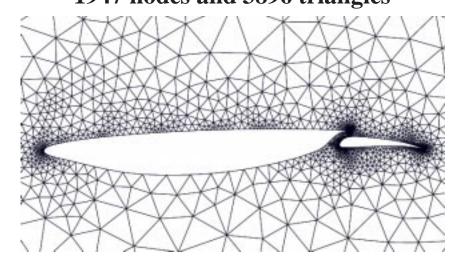
- Hi-fi model FUN2D analysis in RANS mode
- Lo-fi model FUN2D analysis in Euler mode
- Computing on SGI $Origin^{TM}$ 2000, 4 R1OK processors

Viscous mesh: 10449 nodes and 20900 triangles



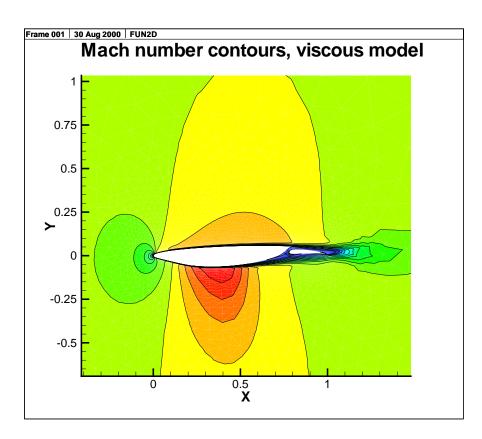
t/analysis pprox 21 min t/sensitivity pprox 21 or 42 min

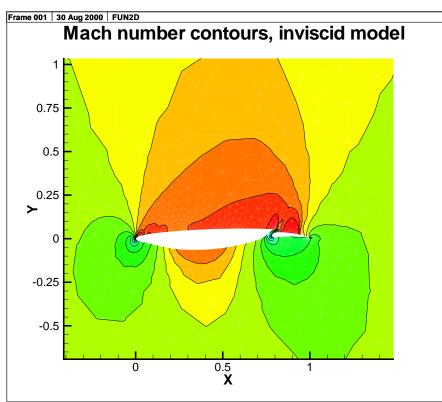
Inviscid mesh: 1947 nodes and 3896 triangles



t/analysis $\approx 23 \text{ sec}$ t/sensitivity $\approx 100 \text{ or } 77 \text{ sec}$

Multi-Element Airfoil: Viscous Effects





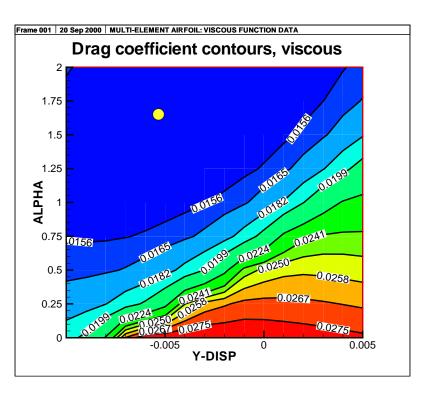
• Boundary and shear layers are visible in the viscous case.

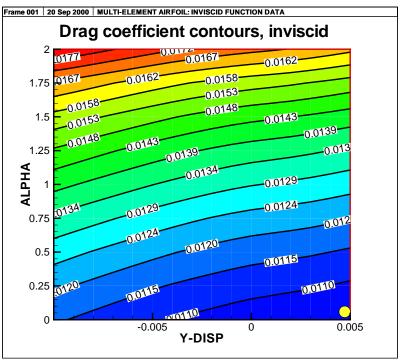
Multi-Element Airfoil: Computational Experiments

- Objective function: minimize drag coefficient subject to bounds on variables
- Case 1: (for visualization)
 - Variables: angle of attack, y-displacement of the flap
 - Solve problem with hi-fi models alone using a commercial optimization code (PORT, Bell Labs)
 - Solve the problem with AMMO, PORT used for lo-fi subproblems
- Case 2:
 - Variables: angle of attack, y-displacement of the flap, geometry description of the airfoil; 84 variables total
 - Same experiment

Multi-Element Airfoil: Models

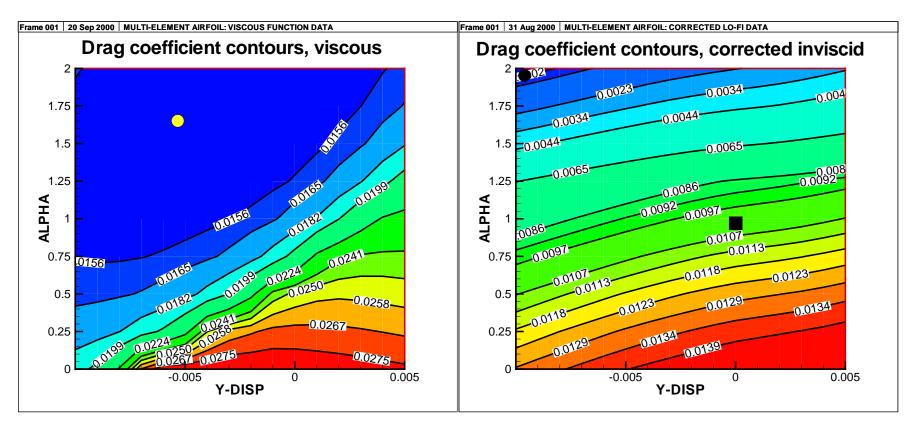
- Time/function for inviscid model negligible compared to viscous model
- Descent trends are reversed unusual but a good test





Multi-Element Airfoil: AMMO Iterations with 2 Variables

Iteration 1. Starting point: $\alpha = 1.0$, y-disp = 0.0 High-fidelity objective vs. corrected low-fidelity objective



New point: $\alpha = 2.0$, y-disp = -0.01

Multi-Element Airfoil: AMMO Iterations with 2 Variables, cont.

- Similar effect in the next iteration
- Solution ($\alpha=1.6305^\circ$, flap y-displacement = -0.0048) located at iteration 2
- $C_D^{ ext{initial}} = 0.0171$ at $(\alpha = 1^\circ, ext{flap } y ext{-displacement} = 0)$
- $C_D^{\text{final}} = 0.0148$, a decrease of approximately 13.45%.

Multi-Element Airfoil: Performance Summary

Notation: No. functions / No. Gradients

Test	hi-fi eval	lo-fi eval	total t	factor
PORT with hi-fi analyses, 2 var	14/13		$pprox 12\mathrm{hrs}$	
AMMO, 2 var	3/3	19/9	$pprox 2.41 ext{hrs}$	pprox 5
PORT with hi-fi analyses, 84 var	19/19		$pprox 35\mathrm{hrs}$	
AMMO, 84 var	4/4	23/8	$pprox 7.2 \mathrm{hrs}$	pprox 5

Concluding Remarks

- AMMO techniques can be used in conjunction with any derivative-based method
- Sensitivity information is becoming increasingly available with analysis codes (automatic differentiation, efficient adjoint techniques) we believe first-order AMMO will prove helpful
- The results are promising
 - Relatively straightforward implementation and integration with simulations
 - Convergence analysis is a direct consequence of the analysis for underlying optimization algorithms
 - Significant savings over conventional optimization in terms of hi-fi evaluations
 - Capture descent behavior with the help of corrections, despite sometimes significant dissimilarities between lo-fi and hi-fi models
 - First-order information is indispensable when model trends are dissimilar